The ARIMA model, which stands for AutoRegressive Integrated Moving Average, is a popular statistical method used for analyzing and forecasting time series data. It combines three key components:
Let’s analyze the monthly sales data of a retail store over the past three years. The aim is to forecast future sales.
Choose the ARIMA Parameters (p, d, q):
statsmodels
, fit the data with the chosen parameters.import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt
## Load the sales data
sales_data = pd.read_csv('monthly_sales.csv', parse_dates=['Date'], index_col='Date')
## Fit the ARIMA model
model = ARIMA(sales_data['Sales'], order=(1, 1, 1))
model_fit = model.fit()
## Forecast the next 12 months
forecast = model_fit.forecast(steps=12)
## Plot the results
plt.figure(figsize=(10, 5))
plt.plot(sales_data['Sales'], label='Historical Sales')
plt.plot(forecast, label='Forecasted Sales', color='red')
plt.legend()
plt.title('Monthly Sales Forecast')
plt.show()
Consider analyzing daily temperature readings from a weather station over the last two years. We aim to forecast future temperatures.
Choose the ARIMA Parameters (p, d, q):
statsmodels
package.import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt
## Load the temperature data
temp_data = pd.read_csv('daily_temperatures.csv', parse_dates=['Date'], index_col='Date')
## Fit the ARIMA model
model = ARIMA(temp_data['Temperature'], order=(2, 1, 2))
model_fit = model.fit()
## Forecast the next 30 days
forecast = model_fit.forecast(steps=30)
## Plot the results
plt.figure(figsize=(10, 5))
plt.plot(temp_data['Temperature'], label='Historical Temperature')
plt.plot(forecast, label='Forecasted Temperature', color='orange')
plt.legend()
plt.title('Daily Temperature Forecast')
plt.show()
The ARIMA model is a versatile tool for time series forecasting. By understanding its components and following a systematic approach, you can effectively analyze and predict data trends in various fields, from retail sales to weather patterns. With practical examples and Python code provided, you are now equipped to start using ARIMA in your own analyses.